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Chapter 1

Introduction

Latest developments in the field of artificial intelligence led to great improvements in
the abilities of large language models to solve many different types of tasks. Prior
work demonstrates ambitious results on tasks that challenge the models’ ability to
reason about maths, physics and informatics. Researchers introduced many datasets
and methods to evaluate the large language models’ abilities to solve these problems.

These datasets and methods are usually based off standardized elementary and high
school tests in these fields. Standardized tests that are publicly available can end up
included in the models’ training data, which can bias the models’ evaluation results.
Currently, most available datasets and evaluation methods are in English, which raises
the question whether observed large language models’ abilities can be generalized to
other languages as well.

1.1 Large Language Models

Large language models are a recent advancement in artificial intelligence, particularly
in the realm of generative models. They operate by first receiving an initial input text,
which is also called a prompt. Then, the model uses its neural network to predict the
next word or token. This token is then appended to the prompt, creating an extended
text input. The process is repeated until a specified length of text or another stopping
criterion is reached. The result is a coherent and contextually relevant piece of text,
generated entirely by the model’s learned patterns and associations within its training
data.

The prompt that was given to the large language model together with the generated
text is called a context window. The model can recall information from its context
window. This allows the user to provide additional context to the model. Alternatively,
the model can in some circumstances use its context window as a kind of scratch pad
and thus better prepare its output. This is taken advantage of by some of the prompting
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techniques.
It was observed that large language models exhibit common-sense reasoning capa-

bilities [14]. More importantly, these models can perform advanced reasoning needed
to solve mathematical problems [12]. Even though large language models are often less
capable than humans in solving such problems, it still allows them to be used in a wide
range of applications.

1.2 Prompting Techniques

Prior research has shown that manipulating the way in which the model’s prompt is
constructed can have a significant impact on the quality of the resulting output. In
this section, we introduce successful techniques that we use to compare large language
model performance in the Slovak language.

1.2.1 Zero-, One- and Few-shot Prompting

Even though large language models are trained on generic text corpus datasets, prior
research has indicated that LLMs do not require fine-tuning the model on the desired
task [15][3].

Brown et al. [3] shows that this fine-tuning step can be replaced by a technique
called few-shot prompting. Few-shot prompting provides the model with few examples
of the desired task, along with sample solutions right in the model’s input. This
measurably improves the models’ capability to solve the desired task, even though
the model was not trained to solve that particular task in the first place. Few-shot
prompting is typically done with 10 to 100 task examples, depending on the size of the
model’s context window.

There are two related techniques to few-shot prompting, introduced by Brown et al.
[3]: one-shot and zero-shot prompting. One-shot prompting is done in the same way
as few-shot, but the model is provided with only one example of the task. Zero-shot
prompting is a similar, but generally less effective, technique in which the model is
provided with a natural language description of the task instead of any examples.

1.2.2 Chain-of-Thought

Another promising prompting technique is chain-of-thought introduced by Wei et al.
[21]. This technique mimics one’s own thought process when solving tasks. The goal of
chain-of-thought prompting is to make the model generate a series of intermediate steps
that lead to the final answer of a problem. Wei et al. [21] shows that large language
models are capable of generating such chain-of-thoughts when provided with such chain-
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of-thoughts in the examples used for few-shot prompting. The model is provided with
example solutions that walk the reader through the different steps leading to the final
answer.

1.2.3 Zero-shot Chain-of-Thought

Classical chain-of-thought prompting as introduced by Wei et al. [21] has the disad-
vantage of needing to provide examples of task solutions including chain-of-thoughts,
which are usually not readily available.

To address such problems, Kojima et al. [6] introduced a simple, yet effective tech-
nique, called zero-shot chain-of-thought. The idea is that when the model is prompted
to "think step by step", it can generate a chain-of-though without needing any exam-
ples beforehand. So, the model is prompted with the question and a simple prompt
like "Let’s think step by step" to force it to generate a chain-of-thought.

1.2.4 Generated Knowledge

Another similar approach to zero-shot chain-of-thought was demonstrated by Liu et al.
[10]. The generated knowledge prompting technique leverages the fact that large lan-
guage models can use their context windows for short-term memory. This is very
similar to some teaching techniques employed when teaching humans new concepts.

The model is prompted to first describe all concepts relevant to solving the problem
and then attempt to solve the problem. This way, the model will introduce a lot of
new information into its context window. It can later retrieve information from the
context window to help itself to solve the problem.

1.2.5 Dual Prompt Generated Knowledge

The generated knowledge prompting method has a slight disadvantage - the model has
a limited number of words or tokens it can produce. Because of this, it can spend a lot
of its available space on preparing the relevant context and end up not having enough
tokens left for the solution itself.

Dual prompt generated knowledge improves on this by prompting the model to only
generate the relevant context. After it generates the context, the model is prompted
again with the original question and the context it generated. This allows the model
to generate longer answers.
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1.2.6 Least-to-Most Prompting

Least-to-most prompting takes advantage of the model’s context window combined
with multiple prompts. The idea introduced by Zhou et al. [22] is that we break the
problem into smaller sub-problems, which are then solved sequentially.

We start by prompting the model with the problem and ask it to list out the
sub-problems that are required to solve the whole problem. We then take the first
sub-problem it generates and ask it to solve it. This is usually done by prompting it
with the original problem and a question to solve a given sub-problem. The solution
of the sub-problem is then appended to the prompt along with another sub-problem.
This process is repeated until the model solves all sub-problems. At that point, we
should have the whole solution.

1.3 Existing Datasets

Large language models have already been evaluated on mathematical reasoning tasks by
researchers using numerous datasets. Most of these datasets were created by scraping
problems from the internet. We provide a comparison of few selected datasets related
to our work to better understand the types and problems involving creating such a
dataset.

MultiArith released by Roy and Roth [16] contains multistep arithmetic problems
without irrelevant quantities. That means that those problems require a combination
of different arithmetic operations to get the answer and don’t have any information
that isn’t needed to solve the problem. The dataset contains symbolic solutions.

Math23K by Wang et al. [20] consists of Chinese elementary school maths problems
scraped from the internet. This dataset contains only problems with single linear
unknown variable. This dataset contains only symbolic solutions.

AQuA introduced by Ling et al. [9] consists of multi-choice word problems covering
a broad range of topics and difficulty levels. This dataset also contains descriptions of
the rationale to reach the correct answer.

MATH is a dataset consisting of challenging competition mathematic problems
with step-by-step natural language solutions introduced by Hendrycks et al. [5]. The
problems were retrieved from United States’ mathematics competitions. These prob-
lems are designed to be challenging for humans and often require more than just basic
application of mathematic tools.

GSM8K released by Cobbe et al. [4] consists of multistep middle school word prob-
lems with natural language solutions. These problems take between 2 and 8 steps to
solve. A bright student should be able to solve all of them.

ASDiv is a mathematical word problem dataset with a strong emphasis on great



DRAFT

1.4. EVALUATING LLM ANSWERS 5

diversity. This dataset of arithmetic and algebraic problems was introduced by Miao
et al. [11].

SVAMP introduced by Patel et al. [13] contains many variations of elementary
school mathematical word problems.

MGSM is a multilingual dataset introduced by Shi et al. [19] containing 250 man-
ually translated grade-school problems from the GSM8K.

Dataset Size Answer Difficulty Language
MultiArith 600 symbolic elementary school English
Math23K 23 161 symbolic elementary school Chinese

AQuA 100 949 multi-choice diverse English
MATH 12 500 natural language competitions English
GSM8K 8 500 natural language elementary school English
ASDiv 2 305 symbolic elementary school English
SVAMP 1 000 symbolic elementary school English
MGSM 250 natural language elementary school multilingual

Figure 1.1: Comparison of existing datasets

1.4 Evaluating LLM Answers

There are few ways to evaluate answers generated by LLMs. The method used varies
depending on the type of question. We will only focus on problems that have known
solutions that can be used to verify the model’s answers.

For questions with concrete numerical answers, the most straightforward approach
is to compare the LLM’s numerical answer to the correct one. However, LLMs usually
generate natural language output. This usually involves extracting the number or
equation from the model’s output. Such an approach is very precise, as shown by
Hendrycks et al. [5], Wang et al. [20] and Sawada et al. [17].

LLMs can also be evaluated on multiple-choice problems. This is done by providing
the model with the options and prompting it to select one of the provided options [19].
With the right prompting, models can output answers that can be extracted in more
than 97% of the time [17]. Alternatively, the model is not provided with the options,
but its answer is extracted as a number and then compared to the available options as
in Amini et al. [2].

The most problematic questions are those which have open answers that cannot
be easily extracted from the model’s output. Unfortunately, these are the types of
questions that we are most interested in. One of the approaches is to try and convert
these questions into ones that allow automatic answer extraction. This is done by
extracting a number or equation from the reference solution and trying to match it
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with the model’s output. Other methods involve changing the question into a multiple-
choice one. Both of those approaches, while valid, do not fully evaluate the model’s
capabilities to correctly solve problems that require natural language solutions.

The most straightforward approach to evaluating such problems is using a human
evaluator. Nonetheless, this approach is highly labor-intensive and ineffective. We can
leverage the existing model’s capabilities and use it instead of a human to evaluate the
answers. Such an approach is called model-based evaluation [17].

In its simplest form, the model is provided by the reference solution and the output
that should be evaluated. It is then asked to grade the provided output. Prior research
indicates that such an approach is possible, but the evaluations are not reliable enough
to be used alone [7] [18]. Some researchers went so far as to avoid providing the model
with the reference solution. Those experiments provided promising results, but they
still failed to be reliable enough [8].

An improved approach was introduced by asking the model to generate evaluation
rubrics, and then using those rubrics to evaluate the solutions [17]. The model is
provided with the reference solution and generates rubrics and allocates points to them.
It was shown by Sawada et al. [17] that GPT-4 designs rubrics that cover most of the
solution steps correctly, but sometimes fail to properly allocate points based on their
importance. The model is quite reliable on assigning the correct number of points to
solutions based on the generated rubrics. However, the model cannot score solutions
that do not follow the generated rubrics, but are otherwise correct. Another issue with
this approach is that the model attempts to assign points to attempted solutions that
are outside the generated rubrics. A human evaluator would score these solutions with
zero points [17]. Knowing its limitations, we will base our approach on this method to
evaluate models on our dataset.

1.5 Prior Research

The MGSM paper by Shi et al. [19] tries to evaluate models’ reasoning abilities in
multiple languages. They achieve this by manually translating 250 problems from
GSM8K [4] into ten typologically diverse languages, which they then used to benchmark
GPT-3 on their dataset. Their research reveals that results are very similar, with
insignificant differences between the various languages. It has been demonstrated that
using an intermediate English chain-of-thought provides results that are on par with
or better than answers written in the question’s original language.

Another multilingual research by Ahuja et al. [1] comprehensively evaluates the
models on various multilingual datasets. Even though this research does not evalu-
ate the advanced reasoning abilities, it demonstrates the overall capabilities of large
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language models to reason in languages other than English. Their results show no
significant differences between the results achieved in the different languages.
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